Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Niobium oxide dispersed on a carbon–ceramic matrix, SiO₂/C/Nb₂O₅, used as an electrochemical ascorbic acid sensor

Leliz T. Arenas^a, Paulo C.M. Villis^a, Jacqueline Arguello^b, Richard Landers^c, Edilson V. Benvenutti^b, Yoshitaka Gushikem^{a,*}

^a Institute of Chemistry, State University of Campinas, Inorganic Chemistry, Campinas, SP, Brazil

^b Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

^c Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, SP, Brazil

ARTICLE INFO

Article history: Received 10 May 2010 Received in revised form 8 September 2010 Accepted 8 September 2010 Available online 16 September 2010

Keywords: Silica niobia composite Carbon-ceramic electrode Vitamin C sensor Sol-gel

ABSTRACT

A film of niobium oxide was immobilized on a SiO_2/C carbon-ceramic matrix (specific surface area 270 m² g⁻¹) and characterized by N₂ adsorption-desorption isotherms, scanning electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy. This new carbon-ceramic material, $SiO_2/C/Nb_2O_5$, was used for construction of electrodes, and it shows ability to improve the electron-transfer between the electrode surface and ascorbic acid. The electrocatalytic oxidation of ascorbic acid was made by differential pulse and cyclic voltammetry techniques, making it potentially useful for developing a new ascorbic acid sensor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Due to physical and chemical properties such as high refractive index, wide band gap, chemical stability and corrosion resistance, Nb_2O_5 films dispersed on porous solid matrices have been widely used as optical and electronic devices [1,2], catalysts [3–7], and ion exchange materials [8,9]. Among the porous solid matrices that serve as supports, silica has attracted attention because the deposition of Nb_2O_5 on the surface occurs by formation of Si–O–Nb bonds, forming a thermally very stable thin film [10]. Additionally, Nb_2O_5 is known for its affinity to adsorb species containing the carboxylic acid group, and it has been proposed as a potential interface for the immobilization of organic molecules and biomolecules to be applied in the development of electrochemical sensors [10–14].

The development of silica based carbon–ceramic electrodes (CCEs) is now a wide field of investigation. These electrodes present the mechanical rigidity of the inorganic framework and the conductivity of graphite; furthermore they have a wide operational voltage window and present renewable surfaces, making possible their use in electroanalysis and electrocatalysis [15–19]. Recently it was reported the use of carbon–ceramic electrodes for detection of organic species such dopamine, uric acid and ascorbic acid [20].

Ascorbic acid (H_2AA) is one of the most important water soluble components present in fruits and vegetables. H_2AA is used in large scale as an antioxidant in food, animal feed, beverages, pharmaceutical formulations and cosmetic applications. Because of its biological and technological importance, the development of electrochemical sensors for H_2AA has received a great attention in the last years, where the search for new materials that can improve the electrochemical analyses has been enhanced [21–26].

In this work, Nb₂O₅ film was immobilized by a grafting reaction on a carbon–ceramic matrix obtained by the sol–gel method. The material SiO₂/C/Nb₂O₅ was characterized using N₂ adsorption–desorption isotherms, scanning electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were employed to study the electrochemical behaviour of this electrode in the oxidation of ascorbic acid, H₂AA.

2. Experimental

2.1. Preparation of the carbon–ceramic SiO_2/C

The carbon-ceramic matrix was prepared by the sol-gel method according to the following procedure: 0.11 mmol of TEOS (tetraethylorthosilicate, Acros 98%), was hydrolyzed in a mixture of 25 mL of ethanol, 4.0 mL of water and 0.86 mL of 37% HCl. After vigorous stirring at 343 K for 4 h, 3.3 g of graphite powder (99.99% Aldrich) was then added and the mixture was ultrasonicated for

^{*} Corresponding author. Tel.: +55 19 3521 3053; fax: +55 19 3521 3023. E-mail address: gushikem@iqm.unicamp.br (Y. Gushikem).

^{0039-9140/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.talanta.2010.09.014

20 min. To this mixture 4.0 mL of water was added and ultrasonicated at 333 K until gelation of the material occurred. It was then allowed to stand for 5 days at 313 K for solvent evaporation. This xerogel was comminuted to a fine powder and then washed with ethanol in a Soxhlet extractor for 6 h. Finally, the xerogel was dried under vacuum $(1.0 \times 10^{-2} \text{ kPa})$ at 340 K during 4 h.

2.2. Nb₂O₅ immobilization on SiO₂/C

To prepare the starting solution for deposition of niobium oxide on SiO_2/C , initially 1.9 g of NbCl₅ was dissolved in 80 mL of dry ethanol under a nitrogen atmosphere and gently shaken for 24 h to eliminate gaseous HCl. The following reaction may take place during solution preparation [27].

$NbCl_5 + nHOC_2H_5 \rightarrow Nb(OC_2H_5)_nCl_{5-n} + nHCl(solutionA)$

Separately, about 20 mg of the dried and powdered SiO₂/C was pressed under 4 ton pressure in a disk format with diameter of 5 mm and a thickness of 1 mm. On the clean disk surface of SiO₂/C a drop of a solution A (0.05 mL) was spread on the disk surface (Scheme 1B) and then exposed to room wet atmosphere for 30 min to eliminate the ethanol and remaining HCl (Scheme 1C). The disk was then washed with water and heated at 353 K for 3 h for drying and consolidation of the Nb₂O₅ on the SiO₂/C surface (Scheme 1D).

2.3. N₂ adsorption-desorption isotherms

The nitrogen adsorption–desorption isotherms of the SiO_2/C xerogel previously degassed at 423 K, were determined at the liquid nitrogen boiling point on a Quantachrome Autosorb 1 Instrument. The specific surface area was determined from the BET (Brunauer, Emmett and Teller) multipoint method [28]. The pore size distribution was obtained using the BJH (Barret, Joyner, and Halenda) method [29].

2.4. Scanning electron microscopy (SEM)

SEM images were obtained using a JEOL JSM 6360LV scanning electron microscope connected to a secondary electron detector with energy dispersive X-ray spectroscopy (EDS) for elemental mapping. The micrograph was obtained with a magnification of $1200 \times$ operating at an accelerating voltage of 20 kV. The sample was dispersed on double faced conducting tape on an aluminum support and carbon-coated in a Bal-Tec MD20 instrument.

2.5. Electrical properties

Solid state electrical conductivities of the SiO₂/C and SiO₂/C/Nb₂O₅ disks were calculated by the equation: $\sigma = \rho^{-1}$, where σ is the conductivity and ρ is the resistivity. The ρ was obtained according to a procedure described elsewhere [30], assuming that the graphite and Nb₂O₅ were dispersed on a nonconductor substrate, and calculated by the equation $\rho = R w F_2 F_4$, where R is the electrical resistance, w is the thickness of the disk (0.10 cm), F_2 and F_4 are correction factors which were taken from the literature (0.5 and 0.9816 respectively) [30]. The R values of the samples were measured at room temperature using a National Instruments NIPXI-1033 four-point probe.

2.6. X-ray photoelectron spectroscopy

The X-ray photoelectron (XPS) spectra of the samples were obtained by using an aluminum anode (Al K = 1486.6 eV) at a pressure of 2.63×10^{-5} Pa on a McPherson ESCA-36 spectrometer. The binding energies were calibrated against the Si 2p level (103.5 eV)

Fig. 1. N_2 adsorption-desorption isotherms of SiO₂/C. Inset figure: the respective BJH pore size distribution.

2.7. Atomic force microscopy (AFM/EFM)

AFM/EFM measurements were carried out on a Nanoscope IIIa (Digital Instruments) apparatus at room temperature. The surface topography was determined with the tapping mode. Upon retrace over the same line, the electrical force was monitored under a noncontact mode at a set lift height of 200 nm from the sample surface. A dc bias voltage of 3 V was applied between across the tip and the sample

2.8. Electrochemical study

Electrochemical measurements were carried out using a PGSTAT-20 Autolab potentiostat–galvanostat with GPES software for collection and analysis of data. A three-electrode system was used, including a saturated calomel electrode (SCE) as reference electrode, a platinum wire as counter electrode and a SiO₂/C or SiO₂/C/Nb₂O₅ disk as working electrode. The disks were glued to a glass tube with glue and the electrical contact was made by a copper wire inserted inside the glass tube. In order to improve the connection between the metal and the disk surface, pure graphite powder was added to the tube. The electrolyte solution was 0.5 mol L⁻¹ KCI in a 0.1 mol L⁻¹ Tris–HCI buffer. Experiments were conducted at room temperature under a nitrogen atmosphere.

3. Results and discussion

3.1. Characterization

3.1.1. Specific surface area and pore size distribution

The SiO₂/C ceramic prepared by the sol-gel method resulted in a porous material with a specific surface area of $270 \text{ m}^2 \text{ g}^{-1}$ and pore volume of $0.07 \text{ cm}^3 \text{ g}^{-1}$. N₂ adsorption isotherm obtained for this material shows a type I curve (Fig. 1), typical of microporous material [31]. Pores with diameters lower than 20 Å were observed in the pore size distribution curve obtained from BJH method (inset Fig. 1).

3.1.2. Micrograph

Fig. 2 illustrates the backscattering SEM image of the disk surface of SiO_2/C immobilized with Nb_2O_5 oxide film and the corresponding C, Si, and Nb EDS mapping images. Two different distribution areas are seen: light-gray and dark-gray zones. In the mapping

Scheme 1. (A) Pressed SiO₂/C disk; deposition of Nb(V) on pressed SiO₂/C disk; (B) reaction with Nb(OC₂H₅)_nCl_{5-n}; (C) exposition to wet atmosphere and (D) the modified SiO₂/C/Nb₂O₅ disk.

images these zones correspond to silica and carbon particles, respectively. In the niobium mapping images, the Nb₂O₅ particles are uniformly dispersed on the disk surface, at the sub micrometric level, considering the magnification used.

3.1.3. X-ray photoelectron spectroscopy (XPS)

To determine the chemical state of the components, the surface of the $SiO_2/C/Nb_2O_5$ material was analyzed by XPS. Fig. 3 shows the XPS spectra and the respective deconvolution curves of the C 1s, O 1s, Si 2p, and Nb 3d core levels. The XPS binding energy values (BE), full-width at half maximum of the peaks, the areas under peaks, and atomic percentages of the elements are summarized in Table 1.

The broad asymmetrical C 1s peak (Fig. 3(a)), consists of four contributions related to the graphitic structure. The main peak is detected at 284.2 eV and attributed to the carbon of the planar graphite network [32]. The other contributions located at 285.8, 287.6 and 289.9 eV corresponding to oxidized graphite [33–35], C–OH, C–O–C and COOH, respectively. In the O 1s deconvoluted

spectrum (Fig. 3(d)) three peaks with different binding energies appear, indicating that oxygen atoms are involved in three distinct chemical bonds. The peaks located at 530.3 and 532.4 eV correspond to O–Nb and O–Si, respectively, [36,37] and the third peak centered at 534.3 eV could be attributed to the O–C bond on the oxidized graphite surface.

The Si 2p spectra (Fig. 3(b)) show a peak at 103.3 eV assigned to silicon in Si–O, Si–OH and Si–O–Si bonds and the other peak at 105.8 eV due to the protonated oxide surface, Si–OH₂⁺ [38]. In the Nb spectrum (Fig. 3(c)), the Nb $3d_{5/2}$ and Nb $3d_{3/2}$ peaks are observed at 207.4 and 210.1 eV, respectively. These values match those obtained for niobium oxide [36,39], evidencing the formation of the Nb₂O₅ film on the SiO₂/C surface. The Nb/Si atomic ratio obtained by XPS was 1.61.

3.1.4. Atomic force microscopy

The $SiO_2/C/Nb_2O_5$ surface was examined by AFM/EFM, and the images are shown in Fig. 4. Significant changes in contrast are observed before (a) and after film formation (b), the smoother appearance originated by the presence

Fig. 2. SEM image of SiO₂/C/Nb₂O₅, and the corresponding EDS mapping of C, Si and Nb. The magnification was 200×.

Fig. 3. X-ray photoelectron spectra of the C 1s (a), Si 2p (b), Nb 3d (c) and O 1s (d) regions for the SiO₂/C/Nb₂O₅.

of niobium oxide demonstrated its ability to improve the conductivity of the electrode by facilitating a more uniform charge of distribution on the carbon–ceramic material.

3.1.5. Conductivity of the pressed disk

Electrical conductivity measurement of the pure carbon–ceramic matrix SiO₂/C shows 0.9 ± 0.3 S cm⁻², indicating that graphite particles are well dispersed and interconnected in the silica network, as seen by the SEM image. However, after the deposition of the Nb₂O₅ film, the conductivity increased to 1.5 ± 0.3 S cm⁻². This increase is evidence that the oxide presence improves the conductivity of the solid.

3.2. Electrochemical characterization and electrocatalytic properties

Potassium ferrocyanide and potassium ferricyanide solutions $(1 \text{ mmol } L^{-1})$ were employed as redox probe for characterization of SiO₂/C/Nb₂O₅ by cyclic voltammetry at a scan rate of 40 mV s⁻¹. A peak potential separation (ΔEp) of 78 mV was observed indicating a quasireversible redox process. The active area of the electrode was estimated by applying the Randles–Sevcik equation as described in the literature [40] and 0.26 cm⁻² was found.

The electrocatalytic activity of the SiO₂/Nb₂O₅/C electrode in the oxidation of ascorbic acid (H₂AA) was studied. Fig. 5 shows the differential pulse voltammograms (DPV) of $1.0 \times 10^{-3} \text{ mol } \text{L}^{-1}$ of H₂AA on the SiO₂/C electrode (Fig. 5(a)) and on the SiO₂/C/Nb₂O₅

Table 1

XPS data for SiO₂/C/Nb₂O₅ disk.

	Binding energies (eV)									
	C 1s				O 1s			Si 2p		Nb 3d
	i	ii	iii	iv	i	ii	iii	i	ii	
SiO ₂ /Nb ₂ O ₅ /C	284.2	285.8	287.6	289.9	530.3	532.4	534.3	103.3	105.8	207.4
	(1.7) ^a	(2.0)	(2.1)	(2.1)	(2.0)	(2.0)	(2.0)	(2.5)	(2.5)	(1.8)
	[53] ^b	[33]	[9]	[5]	[67]	[28]	[5]	[80]	[20]	
	{46.3} ^c				{36.3}			{6.6}		{10.8}
SiO ₂ ^d					532.5			103.3		
Nb ₂ O ₅ ^e					530.4					207.4

^a Full-width at half maximum of the peaks.

^b Relative areas of the peaks.

^c Relative atomic relative percentages.

^d BE reference data for SiO₂ [25].

^e BE reference data for Nb_2O_5 [25].

Fig. 4. 3D EFM images (5 μ m × 5 μ m × 25 Hz) of (a) carbon–ceramic SiO₂/C and (b) SiO₂/C/Nb₂O₅, and the respective horizontal cross section analysis taken at the middle of the image.

electrode (Fig. 5(b)). It can be seen that the presence of Nb₂O₅ at the SiO₂/C surface reduces the overvoltage of H₂AA oxidation, shifting the potential of oxidation to a value more negative by about 0.18 V. The peak current is considerably enhanced compared with the response of H₂AA on the SiO₂/C electrode surface. This behaviour clearly demonstrates the electrocatalytic function of the SiO₂/C/Nb₂O₅ electrode toward ascorbic acid oxidation.

The voltammetric response of H_2AA on the SiO₂/C/Nb₂O₅ electrode may be ascribed to the interaction between the Nb₂O₅ and H₂AA. The interaction includes the formation of covalent bonds between the niobium oxide and H₂AA [41], as shown in Scheme 2, which might lead to a very fast kinetics of H₂AA oxidation on the SiO₂/C/Nb₂O₅ surface. Moreover, niobium oxide is an n-type semiconductor; the conduction band is built from the 3d orbital of the

Nb atoms and the valence band from the 2p orbitals of oxygen [42], it is certain that the electrical conductivity at potentials above the conduction band edge may facilitate transfer of electrons in the oxidation of H₂AA. Scheme 2 shows the possible reaction mechanism, where H₂AA is initially adsorbed on the electrode surface by formation of covalent bond with the niobium oxide, and then oxidized to dehydro ascorbate involving two electrons and two protons [43].

The cyclic voltammograms of SiO₂/C/Nb₂O₅ at various scan rates (10–100 mV s⁻¹) in the presence of 2.0×10^{-3} mol L⁻¹ of H₂AA was studied (Fig. 6(a)). The oxidation current, *ip* (anodic peak current), for H₂AA increased linearly with the scan rate (Fig. 6(b)), according to the equations *ip* (μ A)=(2.05±0.01) ν (mVs⁻¹)+(17.68±1.02), with a linear correlation, *r*=0.999, confirming an adsorption-controlled process. In addition, there is a linear relation between log *ip* and log ν , corresponding to the following equation: log ipa=(0.71±0.02)+(0.82±0.012)log ν ; *r*=0.991. The slope value of 0.82 may be considered as closed to the

Fig. 5. Differential pulse voltammograms of $1.0\times10^{-3}\ mol\,L^{-1}\ H_2AA$, in pH 6.0 (buffer Tris-HCl) and 0.5 mol L^{-1} KCl solutions. Scan rate 10 mV s^{-1}. (a) The carbon-ceramic SiO_2/C electrode and (b) the SiO_2/C/Nb_2O_5 electrode.

Scheme 2. Adsorption of ascorbic acid on the electrode surface and its oxidation.

Fig. 6. Cyclic voltammograms obtained at different scan rates (2 at 100 mV s^{-1}) for SiO₂/C/Nb₂O₅ electrode (a), in $2.0 \times 10^{-3} \text{ mol } L^{-1}$ H₂AA, pH 6.0 (buffer Tris–HCl and 0.5 mol L⁻¹ KCl). Relationship between peak current and scan rate (b).

theoretical expected value of 1.0 for an ideal case of the surfaceadsorbed species with some contribution from diffusion [44].

The pH effects on the potential and current peaks were investigated by cyclic voltammetry (Fig. 7). The anodic peak of the H₂AA under different pH values shows potential shift to more negative values when the pH increases approximately from 3 to 5. Above this value, the potential remained constant. The anodic peak current intensity is not affected by the pH solution change in the pH range between 3 and 8. For practical applications we selected pH 7.0 to carry out the voltammetric determination of H₂AA.

In order to improve the sensitivity for the quantitative determination, DPV has been adopted to record the oxidation current of H₂AA at different concentrations. Fig. 8 shows the voltammograms from 0.0 to $2.38 \times 10^{-3} \text{ mol L}^{-1}$ of H₂AA acid in 0.5 mol L⁻¹ KCl (0.1 mol L⁻¹ Tris–HCl buffer, pH 7). In this range of ascorbic acid concentration, a linear correlation was observed (Fig. 8, inset), demonstrated by the equation *i* (μ A)=(23.76±0.10)[H₂AA] (mmol L⁻¹) with a linear correlation, *r*=0.999 for *N*=16. The achieved detection limit (3 standard deviation of the blank divided by the slope of calibration curve) was 25.03 μ mol L⁻¹ and sensitivity was 23.76 μ A L mmol⁻¹. This result shows the potentiality of the SiO₂/C/Nb₂O₅ electrode to be utilized as an electrochemical sensor for ascorbic acid.

Fig. 7. Plots of the solution pH against $E(\blacksquare)$ and against $i(\triangle)$ for the SiO₂/C/Nb₂O₅ electrode, obtained by cyclic voltammetry, in 4.0×10^{-4} mol L⁻¹ H₂AA in 0.5 mol L⁻¹ of KCl with pH 3–8 solutions (The pH of the solution of H₂AA was set to the same pH as the KCl solution).

Table 2 shows some examples of the different electrodes for ascorbic acid determination. It can be seen that the $SiO_2/C/Nb_2O_5$ material is a competitive electrode for this analysis.

The SiO₂/C/Nb₂O₅ electrode presented good repeatability for ascorbic acid determinations. The relative standard deviation (RSD) of the peak current by DPV for 7 determinations in Tris–HCl buffer (pH 7.0) solution, containing 1.50×10^{-3} mol L⁻¹ of the ascorbic acid, was 3.5%. A set of 3 sensors prepared in the same manner was also tested and the relative standard deviation observed was only 5.5%. Additionally, the electrode indicated prolonged operational and storage stability. When the electrode was stored in air and occasionally used over 9 months, the current response decreased by about 4%. These experiments indicate that the SiO₂/C/Nb₂O₅ electrodes have good stability and repeatability.

In the analysis of H_2AA , some coexistent electroactive species might affect the sensor response for example, dopamine (DA), uric acid (UA), paracetamol (PA), etc. These species should be considered because their oxidation peaks can overlap the H_2AA peak. Fig. 9

Fig. 8. Differential pulse voltammograms with SiO₂/C/Nb₂O₅ electrode, in 0.1 mol L⁻¹ buffer Tris–HCl at pH 7 with 0.5 mol L⁻¹ of KCl at scan rate 10 mV s⁻¹, containing different concentrations of H₂AA: 0.0, 9.98 × 10⁻⁵, 1.99 × 10⁻⁴, 2.98 × 10⁻⁴, 3.97 × 10⁻⁴, 4.95 × 10⁻⁴, 5.93 × 10⁻⁴, 6.90 × 10⁻⁴, 8.84 × 10⁻³, 1.08 × 10⁻³, 1.27 × 10⁻³, 1.46 × 10⁻³, 1.64 × 10⁻³, 1.83 × 10⁻³, 2.02 × 10⁻³, 2.20 × 10⁻³ mol L⁻¹. Inset shows the plot of the electrocatalytic peak current as a function of H₂AA concentration.

Table 2

Comparative performance of different electrodes for ascorbic acid determination.

Electrode	Method	Dynamic range (mmol L ⁻¹)	Limit of detection ($\mu mol L^{-1}$)	Sensitivity ($\mu A mmol^{-1} L$)	Reference
CPE modified with copper(II) phosphate immobilized in a polyester resin	CV	0.02-3.2	10	-	[21]
GC modified with multiwalled carbon nanotubes grafted onto silica electro electrodeposited with gold nanoparticles	CV	1.0-5.0	-	8.59	[22]
Naphthol green B doped polypyrrole film	CV	0.24–25	110.00	7.3	[23]
CPE modified with polypyrrole/ferrocyanide films	CV	0.45-9.62	58.62	-	[24]
Gold modified with 3,4-dihydroxybenzoic acid and aniline	Amperometry	0.10-10.00	50	0.004	[25]
Graphite/propylpyridinium silsesquioxane	Amperometry	0.25–2.5	25	2.5	[26]
$SiO_2/C/Nb_2O_5$ material	PDV	0.099–2.38	25.03	23.76	This work

Table 3

Determination of ascorbic acid in commercial samples.

Commercial sample	Stated contents (g)	PDV method using the electrode (g)	Standard iodometric method (g)
Tablet A	1.0	0.999 (0.631) ^a	0.998 (0.492)
Tablet B	1.0	1.015 (0.871)	1.020 (0.590)

^a RSD, % for n = 4.

shows the DPV responses of H₂AA, DA, UA, PA in pH 7.5 (Tris–HCl buffer). The oxidation of these species at the SiO₂/C electrode shows three broad overlapped anodic peaks (Fig. 9, curve b), suggesting that the oxidation peaks of DA, UA and PA are overlapped. Thus, DA, UA and PA could influence the oxidation signal of H₂AA at the unmodified SiO₂/C electrode. However, for SiO₂/C/Nb₂O₅ electrode, it was observed four separated peaks at -0.06 V, 0.11 V, 0.21 V and 0.31 V (Fig. 9, curve a). The oxidation peak potential difference between the species is about 100 mV, indicating that the species oxidations take place independently at the SiO₂/C/Nb₂O₅. Therefore, SiO₂/C/Nb₂O₅ is suitable for the selective detection of H₂AA.

Fig. 9. DPV curves of 0.50 mmol L^{-1} H₂AA, 0.056 mmol L^{-1} DA, 0.20 mmol L^{-1} UA and 0.11 mmol L^{-1} PA in pH 7.5 buffer Tris–HCl. (a) SiO₂/C/Nb₂O₅ and (b) SiO₂/C.

3.3. Use of the SiO_2/C/Nb_2O_5 electrode to determine ascorbic acid in vitamin C tablets

In order to evaluate the applicability of this electrode for catalytic oxidation of H_2AA in real samples, effervescent tablets of vitamin C were examined by voltammetric determination of H_2AA . The results for these analyses with DPV, using SiO₂/C/Nb₂O₅ electrode, were compared to the standard iodometric method [45] and they are presented in Table 3. As can be observed, the obtained results are very close, showing that the electrode could be efficiently used for determination of ascorbic acid in commercial samples.

4. Conclusions

 Nb_2O_5 was immobilized on the microporous carbon–ceramic matrix SiO_2/C . The Nb_2O_5 shows a homogeneous dispersion in micrometric level, and it improves the conductivity of the solid. The $SiO_2/C/Nb_2O_5$ material shows electrocatalytic activity in the oxidation of ascorbic acid and this property can be attributed to the interaction between Nb_2O_5 and ascorbic acid, forming a chemical bond and also due the semiconductor property of Nb_2O_5 . This electrode showed stable, selective and reproducible response for ascorbic acid for several months, and it can be efficiently used for determination of ascorbic acid in commercial samples.

Acknowledgements

The authors thank FAPESP for fellowships L.T.A., process 06/61214-4 and financial support. They also thank the Brazilian Synchrotron Light Laboratory (LNLS) for the AFM/EFM measurements and are grateful to Prof. Carol H. Collins for manuscript review.

References

- R. Leitel, O. Stenzel, S. Wilbrandt, D. G\u00e4bler, V. Janicki, N. Kaiser, Thin Solid Films 497 (2006) 135.
- [2] F. Lai, M. Li, H. Wang, H. Hu, X. Wang, J.G. Hou, Y. Song, Y. Jiang, Thin Solid Films 488 (2005) 314.
- [3] S. Martínez-Méndez, Y. Henríquez, O. Domínguez, L. D'Ornelas, H. Krentzien, J. Mol. Catal. A 252 (2006) 226.
- [4] A.M. Gaffney, S. Chaturvedi, M.B. Clark Jr., S. Han, D. Le, S.A. Rykov, J.G. Chen, J. Catal. 229 (2005) 12.
- [5] H. Miyake, H. Kozuka, J. Phys. Chem. B 109 (2005) 17951.
- [6] K. Asakura, Y. Iwasawa, J. Phys. Chem. 95 (1991) 1711.
- [7] M. Ziolek, Catal. Today 78 (2003) 47.
- [8] D. Budziak, E.L. Silva, S.D. Campos, E. Carasek, Microchim. Acta 141 (2003) 169.
- [9] M.S.P. Francisco, W.S. Cardoso, Y. Gushikem, Langmuir 20 (2004) 8707.
- [10] C.A. Pessoa, Y. Gushikem, L.T. Kubota, Electrochim. Acta 46 (2001) 2499.
- [11] C.A. Pessoa, Y. Gushikem, J. Porphyr. Phthalocya. 5 (2001) 537.
- [12] S.S. Rosatto, P.T. Sotomayor, L.T. Kubota, Y. Gushikem, Electrochim. Acta 47 (2002) 4451.
- [13] X. Xu, B. Tian, J. Kong, S. Zhang, B. Liu, D. Zhao, Adv. Mater. 15 (2003) 1932.
- [14] X. Xu, B. Tian, S. Zhang, J. Kong, D. Zhao, B. Liu, Anal. Chim. Acta 519 (2004) 31.
- [15] M. Tslonky, G. Gun, V. Glezer, O. Lev, Anal. Chem. 66 (1994) 1747.
- [16] L. Rabinovich, O. Lev, Electroanalysis 13 (2001) 265.
- [17] H. Razmi, E. Habibi, H. Heidari, Electrochim. Acta 53 (2008) 8178.
- [18] G. Cabello-Carramolino, M.D. Petit-Dominguez, Microchim. Acta 164 (2009)
- [19] C.M. Maroneze, L.T. Arenas, R.C.S. Luz, E.V. Benvenutti, R. Landers, Y. Gushikem, Electrochim. Acta 53 (2008) 4167.
- [20] A. Salimi, H. MamKhezri, R. Hallaj, Talanta 70 (2006) 823.
- [21] M.F.S. Teixeira, L.A. Ramos, O. Fatibello-Filho, É.T.G. Cavalheiro, Anal. Bioanal. Chem. 376 (2003) 214.
- [22] D. Ragupathy, A.I. Gopalan, K.P. Lee, Sens. Actuators B 143 (2010) 696.
- [23] A. Mohadesi, M.A. Taher, Sens. Actuators B 123 (2007) 733.

- [24] J.B. Raoof, R. Ojani, S. Rashid-Nadimi, Electrochim. Acta 49 (2004) 271.
- [25] J.J. Sun, D.M. Zhou, H.Q. Fang, H.Y. Chen, Talanta 45 (1998) 851.
- [26] R.V.S. Alfaya, Y. Gushikem, A.A.S. Alfaya, J. Braz. Chem. Soc. 11 (2000) 281.
- [27] S. Denofre, Y. Gushikem, S.C. de Castro, Y. Kawano, J. Chem. Soc. Faraday Trans. 89 (1993) 1057.
- [28] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309.
- [29] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.
- [30] E.M. Girotto, I.A. Santos, Quim. Nova 25 (2002) 639.
- [31] S.J. Gregg, K.S.W. Sing, Adsorption Surface Area Porosity, Academic Press, London, 1982 (Ch 3 and 4).
- [32] J. Mulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron Spectroscopy, Perkin-Elmer Corp., State of Minnesota, 1992.
- 33] G. Speranza, L. Minati, M. Anderle, J. Appl. Phys. 102 (2007) 043504.
- [34] H.K. Jeong, L. Colakerol, M.H. Jin, P.A. Glans, K.E. Smith, Y.H. Lee, Chem. Phys. Lett. 460 (2008) 499.
 [35] H. K. Jeong, Y.B. Leo, P.W.E. Lebaue, M.H. Park, K.H. And H. Kim, C.W. Yu, C.W. Ku, C. K. Ku, K. Ku,
- [35] H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, J. Am. Chem. Soc. 130 (2008) 1362.
- [36] M.S.P. Francisco, R. Landers, Y. Gushikem, J. Solid State Chem. 177 (2004) 2432.
- [37] P. Carniti, A. Gervasini, M. Marzo, J. Phys. Chem. C 112 (2008) 14064.
- [38] K.H.A. Bogart, V.M. Donnelly, J. Appl. Phys. 87 (2000) 8351.
- [39] V. Boffa, J.E. ten Elshof, R. Garcia, D.H.A. Blank, Micropor. Mesopor. Mater. 118 (2009) 202.
 [40] Levielle VII. Leiden VII. Anterna P.B. B. Statistical Science Scienc
- [40] J. Argüello, V.L. Leidens, H.A. Magosso, R.R. Ramos, Y. Gushikem, Electrochim. Acta 54 (2008) 560.
- [41] S. Denofre, Y. Gushikem, C.U. Davanzo, Eur. J. Solid State Inorg. Chem. 28 (1991) 1295.
- [42] M.A. Aegerter, Sol. Energy Mater. Sol. Cell 68 (2001) 401.
- [43] U. Chandra, B.E.K. Swamy, O. Gilbert, B.S. Sherigara, Electrochim. Acta 55 (2010) 7166.
- [44] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundaments Applications, John Wiley, New York, 1980.
- [45] O. Zenebon, N.S. Pascuet, Métodos Físico-Químicos para Análise de Alimentos, Instituto Adolfo Lutz, Brasília, 2005, p. 169.

L.T. Arenas et al. / Talanta 83 (2010) 241-248